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Refresher:  
The Principles  
of Regression 
Analysis 

Before we jump into some common 
mistakes made during regression 
analysis, let’s quickly refresh on 
the underlying principles. 

Regression analysis helps you understand the 
relationship between dependent and independent 
variables in order to help you make predictions. What 
you’re trying to learn from regression analysis is how 
your dependent variable(s) increase or decrease as 
your independent variables change. You do this by 
fitting a model to your data. 

This model is not designed to describe the relation-
ship perfectly. Rather, your goal is to find as simple 
a model as possible that comes close to describ-
ing your system so you understand the system, 
reach valid scientific conclusions, and design new 
experiments.

Here is a simple, real-world example that most of you 
have probably encountered to help understand the 
goal of regression analysis.

If you drive a gas-powered car, you’ve realized that 
there is a relationship between the amount of money 
that you spend to put gasoline in the vehicle with 
how far the vehicle can go before you need to add 
more. By understanding the relationship between 
these two factors (amount of money spent on fuel 
and distance you can travel), you’re essentially 
performing a regression analysis. What’s more, you 
can also use this analysis to make predictions about 
future events. If you need to make a long road trip 
and know about how far you’ll be driving, you can use 
the relationship described by the regression analysis 
to estimate how much money you’ll need to spend on 
gas. That’s one simple form of regression analysis, 
but the applications are vast.

CHAPTER 1

What you’re trying to learn 

from regression analysis is 

how your dependent variable(s) 

increase or decrease as your 

independent variables change. 

You do this by fitting a model 

to your data. 
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The Idea of Regression

All models in regression analysis 
define an outcome (Y) as a function 
of one or more parameters and 
an independent variable (X) [or 
several independent variables]. 
The goal is to adjust the values of 
the model’s parameters to find the 
line or curve that comes closest to 
your data. 

For example, with linear regres-
sion, the goal is to find the best-fit 
values of the slope and intercept 
that optimizes the distance of 
the line to the data. With nonlin-
ear regression of a normalized 
dose-response curve, the goal is 
to adjust the values of the EC50 
(the concentration that provokes 
a response halfway between 
the minimum and maximum 
responses) and the slope of  
the curve. 

The Goals of Regression

Typically, scientists use regression 
with one of three distinct goals:

To fit a model to your data in 
order to obtain best-fit values of 
the parameters, or to compare 
the fits of alternative models. If 
this is your goal, you must pick a 
model (or two alternative models) 
carefully, and pay attention to 
all the results. The whole point 
is to obtain best-fit values for 
the parameters, so you need to 
understand what those parame-
ters mean scientifically. 

To fit a smooth curve in order 
to interpolate values from the 
curve, or perhaps to draw a graph 
with a smooth curve. If this is your 
goal, you can assess it purely by 
looking at the graph of data and 
curve. There is no need to learn 
much theory.

To make predictions based on 
your data. Unlike the case of 
simply fitting a smooth curve, in 
order to make predictions, you 
must understand how the data 
were generated as well as why 
you should select a specific model 
(and its parameters) for that data.

Complexity of  
Regression Analysis

Although many scientists perform 
regression analysis more than 
any other statistical technique, 
many state they don’t understand 
the underlying principles. It is a 
flexible and powerful tool. It can 
also be complex. 

The following resources in this 
guide will help you understand 
the common regression analysis 
mistakes, and provide advice so 
you can avoid them.

CHAPTER 1
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Before analyzing your data with linear 
regression, stop and ask yourself whether  
it might make more sense to fit your data 
with nonlinear regression. 

How Linear and Nonlinear Regression Work

A line is described by a simple equation that calculates Y from X, 
slope and intercept (y = mx + b), slope and intercept. The purpose  
of linear regression is to find values for the slope (m) and intercept 
 (b) that define the line that comes closest to the data. Just like 
linear regression, nonlinear regression also attempts to find the 
values of the parameters that make the line or curve come as  
close as possible to the data.

Both linear and nonlinear regression find the values of the  
parameters (slope and intercept for linear regression) that  
make the line or curve come as close as possible to the data.  
More precisely, this process attempts to minimize the sum of the 
squares of the vertical distances of the points from the curve.

Linear regression accomplishes this goal using math that can  
be completely explained with simple algebra (shown in many  
statistics books). Put the data in, and the answers come out.  
There is no chance for ambiguity. You could even do the  
calculations by hand, if you wanted to.

Nonlinear regression uses a computationally intensive, iterative 
approach that can only be explained using calculus and matrix algebra.  
The method requires initial estimated values for each parameter.

CHAPTER 2

Using Linear Regression  
Instead of Nonlinear Regression

MISTAKE #1

The purpose of linear 

regression is to find  

values for the slope (m)  

and intercept (b) that  

define the line that comes 

closest to the data.
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Why Minimize the Sum of Squared Distances?

When performing linear (or nonlinear) regression, you want 
your curve to come as close to as many data points as possible. 
Intuitively, you may think that minimizing the sum of the actual dis-
tances of the points to the fit line (or curve) would work. However, 
imagine a curve passing by two points of a larger data set: one at a 
distance of 2 units, and the other at a distance of 8 units. The sum 
of distances in this scenario would be 10 units. A second possible 
fit curve could pass by these same points at a distance of 5 units 
each, and again, the sum of distances would be 10 units. Linear 
and nonlinear regression assume that the error in measurements 
follows a Gaussian distribution. As such, it’s far more likely to have 
two medium size deviations than to have one small deviation and 
one large deviation. Calculating the sum of squared distances in 
the previous example results in a value of 68 (82 + 22) for the first 
fit, but only 50 (52 + 52) for the second fit. Minimizing the sum of 
squared distances of all of the points in a data set provides the line 
(or curve) most likely to be correct.

Linear Regression is a Special 
Case of Nonlinear Regression

Nonlinear regression can fit any model, 
including a linear one. Therefore, linear 
regression is just a special case of non-
linear regression.

Even if your goal is to fit a straight line 
through your data, there are many situ-
ations where it makes sense to choose 
nonlinear regression rather than linear 
regression.

While using nonlinear regression to 
analyze data is only slightly more difficult 
than using linear regression, your choice 
of linear or nonlinear regression should 
be based on the model you are fitting.

CHAPTER 2

Even if your goal is to fit a straight line 

through your data, there are many situations 

where it makes sense to choose nonlinear 

regression rather than linear regression.
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Tip: Avoid Outdated Data 
Transformations

If you have transformed nonlinear data 
to create a linear relationship, you will 
almost certainly be better off fitting 
your original data using nonlinear 
regression.

Before nonlinear regression was readily 
available, the best way to analyze non-
linear data was to transform the data to 
create a linear graph, and then analyze 
the transformed data with linear regres-
sion. Examples include Lineweaver-Burk 
plots of enzyme kinetic data, Scatchard 
plots of binding data, and logarithmic 
plots of kinetic data.

These methods are outdated, and should 
not be used to analyze data.

The problem with these methods is 
that the transformation distorts the 
experimental error. Linear regression 
assumes that the scatter of points 
around the line follows a Gaussian dis-
tribution and that the standard devi-
ation is the same at every value of X. 
These assumptions are rarely true  
after transforming data. 

Furthermore, some transformations 
alter the relationship between X and 
Y. For example, in a Scatchard plot the 
value of X represents the concentration 
of ligand bound by a receptor ([bound]), 
while Y represents the ratio of the 
concentration of bound ligand vs. the 
concentration of free ligand ([bound]/
[free]). When linear regression is per-
formed, X ([bound]) is used to calculate 
Y ([bound]/[free]), but this violates the 
assumption of linear regression that 
all uncertainty is in Y while X is known 
precisely. It doesn't make sense to min-
imize the sum of squares of the vertical 
distances of points from the line, if the 
same experimental error appears in 
both X and Y directions.

Since the assumptions of linear regres-
sion are violated, the values derived from 
the slope and intercept of the regression 
line are not the most accurate deter-
minations of the variables in the model. 
Considering all the time and effort you 
put into collecting data, you want to use 
the best possible technique for analyzing 
your data. Nonlinear regression produces 
the most accurate results.

CHAPTER 2

Linear regression assumes that the scatter  

of points around the line follows a Gaussian  

distribution and that the standard deviation is  

the same at every value of X. These assumptions 

are rarely true after transforming data.
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The Problem with Transforming Data

The figures here show the problem of transforming data. The top panel 
shows data that follow a rectangular hyperbola (binding isotherm). The 
bottom panel is a Scatchard plot of the same data. The solid curve in the top 
panel was determined by nonlinear regression. The solid line in the bottom 
panel shows how that same curve would look after performing a Scatchard 
transformation. In contrast, the dotted line in the bottom panel shows 
a line generated by a linear regression fit to the data after it had already 
been transformed. Scatchard plots can be used to determine the receptor 
number (Bmax, determined as the X-intercept of the linear regression line) 
and the equilibrium dissociation constant (Kd, determined as the negative 
reciprocal of the slope). Since the Scatchard transformation amplified 
and distorted the scatter of the points, the linear regression fit performed 
after transformation will not yield the most accurate values for Bmax and Kd.

 Linear Transformations Are Still Useful, But Not for Analysis

The Bottom Line: Don't use linear regression just to avoid using nonlinear 
regression. Fitting curves with nonlinear regression is not difficult, and 
provides more accurate estimates for the parameters of your data.

Although it is usually inappropriate 
to analyze transformed data, it is 
often helpful to display data after a 
linear transformation. Many people 
find it easier to visually interpret 
transformed data. This makes 
sense because the human eye 
and brain evolved to detect edges 
(lines) — not to detect rectangular 
hyperbolas or exponential decay 
curves. Even if you analyze your 

data with nonlinear regression, 
it may make sense to display the 
results of a linear transformation.

Take, for example, these 
Lineweaver-Burk plots showing 
various types of inhibition of an 
enzyme-substrate reaction

Using these linear transforma-
tions, you can quickly see that 
for competitive inhibition the two 

lines intersect at the y-axis, while 
for noncompetitive inhibition the 
lines intersect at the x-axis, and for 
uncompetitive inhibition the two 
lines are parallel. Using linear trans-
formations to present data and make 
quick, general inferences this way is 
perfectly acceptable, but nonlinear 
regression should still be used to 
calculate the desired parameters 
from your data.

CHAPTER 2
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First off, correlation and linear regression are not the 
same. Understanding each of these terms and their 
differences will help you avoid the mistake of confusing 
these two seemingly similar concepts.

CHAPTER 3

Confusing Linear  
Regression With Correlation 

MISTAKE #2

What is Correlation?

In the previous chapter, you saw that 
linear regression is a technique used to 
find a best line that can predict values of Y 
from values of X. In comparison, correla-
tion is a technique used to quantify the 
degree to which two variables are related. 
However, correlation does not fit a line 
through the data points. This technique 
is simply used to compute a correlation 
coefficient (r) that tells you how much 
one variable tends to change as the other 
variable changes. The value of r provides 
this information: when r is 0.0, there is no 
relationship; when r is positive, the trend 
in the data is that one variable increases 
as the other variable increases; when r 
is negative, the trend is that one variable 
increases as the other decreases. The 
value of r can range from +1 to -1, and pro-
vides some information on how “strongly” 
the two variables are correlated. That’s it!
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So What Are the Differences?

Aside from linear regression generating 
a line and correlation simply providing a 
measurement of how the variables tend 
to change with respect to each other, 
there are some important differences 
between these two techniques. First, 
linear regression is usually used when X 
is a variable that you manipulate (time, 
concentration, etc.) to obtain a mea-
surement for Y. In this relationship, X is 
referred to as the “independent” vari-
able, while Y is the “dependent” variable. 
As an example, imagine you wanted to 

The Bottom Line

By now, you’ve seen that linear regression and correlation are 
definitely not the same thing. However, these two techniques 
do share some similarities. 

Linear regression quantifies the goodness of fit of the deter-
mined line with the term “r2”, sometimes shown as “R2”. If you 
put the same data into correlation (which as we showed is 
rarely appropriate), the square of r from correlation will equal 
r2 from regression

measure the growth of a plant exposed to 
different amounts of sunlight. You would 
select various exposure times of sunlight 
(your X or independent variable) and you 
would measure the resulting growth (your 
Y or dependent variable) after some time. 

In contrast, correlation is almost always 
used when you measure both variables. It 
is rarely appropriate when one variable is 
something you experimentally manipulate. 
Say, for example, you wanted to see the 
relationship between the height and weight 
of various professional athletes. You could 
collect both measurements for a number 
of different players, but you would not be 
experimentally determining either.

Another difference between these two 
techniques is that the decision of which 
variable you call “X” and which you call “Y” 
matters in regression. The line that best 
predicts Y from X is not the same as the 
line that predicts X from Y (and scientifi-
cally, this often makes no sense anyway). 
With correlation, you don’t have to think 
about cause and effect. It doesn’t matter 
which of the two variables you call “X” and 
which you call “Y”.

CHAPTER 3

Say, for example, you wanted to see the  

relationship between the height and weight  

of various professional athletes. You could 

collect both measurements for a number  

of different players, but you would not be 

experimentally determining either.
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You should not fit a model to the rolling 
average data with linear or nonlinear 
regression, or compute a correlation 
coefficient. 

The problem is that regression assumes that each value is 
independent of the others, but the rolling average are not at all 
independent of each other. Rather each value is included as part 
of the neighboring values.

Illustrative Example: Hurricanes Over Time

The figure here shows the number of hurricanes over time. The 
top panel shows the number of hurricanes in each year, which 
jumps around a lot. To make it easier to spot trends, the bottom 
panel shows a rolling average. The value plotted for each year is 
the average of the number of hurricanes for that year plus the 
prior eight years. This smoothing lets you see a clear trend.

But there is a problem. These are not real data. Instead, the values 
plotted in the left panel were chosen randomly (from a Poisson 
distribution, with a mean of 10). There is no pattern. Each value was 
randomly generated without regard to the previous (or later) values.

CHAPTER 4

Fitting a Model to  
Smoothed Data

MISTAKE #3

The Bottom Line: Creating the running average creates the impression 
of trends by ensuring that any large random swing to a high or low value is 
amplified, while variability is muted. This is misleading at best, and often 
times makes the research invalid. 
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Nonlinear regression, like linear regression, 
assumes that the scatter of data around 
the ideal curve follows a Gaussian or normal  
distribution. This assumption leads to the 
familiar goal of regression: to minimize 
the sum of the squares of the vertical or 
Y-value distances between the points and 
the curve. 

However, experimental mistakes can lead to erroneous  
values—outliers. Even a single outlier can dominate the sum-
of-the-squares calculation, and lead to misleading results. 

Is it ‘Cheating’ to Remove Outliers?

Some people feel that removing outliers is ‘cheating’. It can 
be viewed that way when outliers are removed in an ad hoc 
manner, especially when you remove only outliers that get in 
the way of obtaining results you like. But leaving outliers in 
the data you analyze can also be perceived as ‘cheating’, as  
it can lead to invalid results.

CHAPTER 5

To Remove or Not to Remove: 
Data Points and Outliers

MISTAKE #4
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An Approach to Removing Outliers

Here is a Bayesian way to think about 
systematic approaches to removing 
outliers. When a value is flagged as an 
outlier, there are two possibilities.

• A coincidence occurred, the kind of 
coincidence that happens in few per-
cent of experiments even if the entire 
scatter is Gaussian (depending on how 
aggressively you define an outlier).

• A ‘bad’ point got included in your data.

Which possibility is more likely? It 
depends on your experimental system.

If your experimental system generates 
a ‘bad’ point in a few percent of experi-
ments, then it makes sense to eliminate 

the point as an outlier. It is more likely to 
be a ‘bad’ point than a ‘good’ point that 
just happened to be far from the curve.

If your system is very pure and con-
trolled, ‘bad’ points occur very rarely 
and it is more likely that the point is 
far from the curve due to chance (and 
not mistake) and you should leave it 
in. Alternatively, in that case you can 
change the threshold for defining outli-
ers in order to only detect outliers that 
are much further away.

Remember that Outliers Aren’t 
Always ‘Bad’ Points

In some situations, data points that at 
first appear to be outliers may not have 
been caused by experimental mistakes, 
but rather be the result of biological 
variation, or differences in some other 
variable that is not included in your 
model. Here, the presence of an outlier 
may be the most interesting finding of 
your study. It would be a big mistake to 
automatically exclude such outliers in 
this situation without further thought (or 
experimentation).

The Bottom Line

There are certainly circumstances that would require you 
to remove outliers. Consider each case before you do so to 
improve accuracy. Removing ‘bad’ points isn’t necessarily a 
bad thing, but outliers might also be telling you something 
important about your research.

CHAPTER 5

Removing ‘bad’ points isn’t necessarily a bad thing, 

but outliers might also be telling you something 

important about your research.
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The goal of nonlinear regression is to fit a model to your data. The program finds 
the best-fit values of the parameters in the model (perhaps rate constants, 
affinities, receptor number, etc.) which you can interpret scientifically.

CHAPTER 6

Allowing a Program  
to Select a Model For You

MISTAKE #5

The Bottom Line: Don’t use a computer program as a way to avoid understanding 
your experimental system, or to avoid making scientific decisions.

Choosing a model is a scientific decision. You should 
base your choice on your understanding of chem-
istry or physiology (or genetics, etc.). The choice 
should not be based solely on the shape of the data 
on your graph.

However, some programs automatically fit data to 
thousands of equations and then present you with 

the equation(s) that fit the data best. Using such a 
program is appealing because it frees you from the 
need to choose an equation. 

The problem is that the program has no understand-
ing of the scientific context of your experiment. 
The equations that fit the data best are unlikely to 
correspond to scientifically meaningful models. You 
will not be able to interpret the best-fit values of the 
parameters, so the results are unlikely to be useful.

Letting a program choose a model for you can be 
useful if your goal is to simply create a smooth curve 
for simulations or interpolations. In these situations, 
you don’t care about the value of the parameters or 
the meaning of the model. You only care that the curve 
fit the data well and does not wiggle too much. Avoid 
this approach when the goal of curve fitting is to fit 
the data to a model based on chemical, physical, or 
biological principles. 

Choosing a model is a scientific 

decision. You should base your choice 

on your understanding of chemistry 

or physiology (or genetics, etc.). The 

choice should not be based solely on 

the shape of the data on your graph.
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CHAPTER 7

Regression Analysis  
with GraphPad Prism 
GraphPad Prism is the world’s 
leading data analysis and 
graphing solution purpose- 
built for scientific research.

750,000 of the world’s leading scientists use Prism 
to save time performing statistical analyses, make 
more accurate analysis choices, and elegantly graph 
and present their scientific research.

Download a free trial today—no credit cards, no 
commitments— and be on your way to sharing your 
research with the world!

www.graphpad.com

FOR MAC AND WINDOWS
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